The Role of Gravity Wave Induced Drag and Diffusion in the Momentum Budget of the Mesosphere

1982 ◽  
Vol 39 (4) ◽  
pp. 791-799 ◽  
Author(s):  
James R. Holton
2015 ◽  
Vol 33 (4) ◽  
pp. 483-504 ◽  
Author(s):  
M. Ern ◽  
P. Preusse ◽  
M. Riese

Abstract. It is known that atmospheric dynamics in the tropical stratosphere have an influence on higher altitudes and latitudes as well as on surface weather and climate. In the tropics, the dynamics are governed by an interplay of the quasi-biennial oscillation (QBO) and semiannual oscillation (SAO) of the zonal wind. The QBO is dominant in the lower and middle stratosphere, and the SAO in the upper stratosphere/lower mesosphere. For both QBO and SAO the driving by atmospheric waves plays an important role. In particular, the role of gravity waves is still not well understood. In our study we use observations of the High Resolution Dynamics Limb Sounder (HIRDLS) satellite instrument to derive gravity wave momentum fluxes and gravity wave drag in order to investigate the interaction of gravity waves with the SAO. These observations are compared with the ERA-Interim reanalysis. Usually, QBO westward winds are much stronger than QBO eastward winds. Therefore, mainly gravity waves with westward-directed phase speeds are filtered out through critical-level filtering already below the stratopause region. Accordingly, HIRDLS observations show that gravity waves contribute to the SAO momentum budget mainly during eastward wind shear, and not much during westward wind shear. These findings confirm theoretical expectations and are qualitatively in good agreement with ERA-Interim and other modeling studies. In ERA-Interim most of the westward SAO driving is due to planetary waves, likely of extratropical origin. Still, we find in both observations and ERA-Interim that sometimes westward-propagating gravity waves may contribute to the westward driving of the SAO. Four characteristic cases of atmospheric background conditions are identified. The forcings of the SAO in these cases are discussed in detail, supported by gravity wave spectra observed by HIRDLS. In particular, we find that the gravity wave forcing of the SAO cannot be explained by critical-level filtering alone; gravity wave saturation without critical levels being reached is also important.


2020 ◽  
pp. 130-135
Author(s):  
D.N. Korotaev ◽  
K.N. Poleshchenko ◽  
E.N. Eremin ◽  
E.E. Tarasov

The wear resistance and wear characteristics of cluster-gradient architecture (CGA) nanostructured topocomposites are studied. The specifics of tribocontact interaction under microcutting conditions is considered. The reasons for retention of high wear resistance of this class of nanostructured topocomposites are studied. The mechanisms of energy dissipation from the tribocontact zone, due to the nanogeometry and the structural-phase structure of CGA topocomposites are analyzed. The role of triboactivated deformation and diffusion processes in providing increased wear resistance of carbide-based topocomposites is shown. They are tested under the conditions of blade processing of heat-resistant titanium alloy.


2000 ◽  
Vol 609 ◽  
Author(s):  
Paul Stradins ◽  
Akihisa Matsuda

ABSTRACTThe drift and diffusion in the presence of charged defects and photocarriers trapped in the tail states is re-examined. In continuity equations, diffusive and drift currents are related to free particles while the Poisson equation includes all charges. In order to make use of ambipolar diffusion approximation, the mobilities and diffusion coefficients should be attributed to the total electron and hole populations making them strongly particle-number dependent. Due to the asymmetry of the conduction and valence band tails, almost all trapped electrons reside in negatively charged defects (D−). A simple model of photocarrier traffic via tail and defect states allows to establish the effective mobility values and coefficients in Einstein relations. In a photocarrier grating experiment, grating of D− is counterbalanced by the grating of trapped holes. Nevertheless, electrons remain majority carriers, allowing the measurement of minority carrier diffusion length, but analysis is needed to relate the latter with μτ product.


Sign in / Sign up

Export Citation Format

Share Document